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A Micromachined Chemical Jet Dispenser

Principal Investigator: Steve Swierkowski
Co-Investigator:  Dino Ciarlo

   I.  Objective

The goal of this project is to design, build, and test a new type of microstructure that is a multi-
channel micromachined chemical fluid jet dispenser that is applicable to prototype tests with
biological samples that demonstrate its utility for molecular biology experiments.  The objective is to
demonstrate a new device capable of ultrasonically ejecting droplets from 10-200 µm diameter
capillaries that are arranged in an array that is linear or focused.

   II.  Background   

The greatest application to date of MEMS(Micro Electro Mechanical Systems) technology is the
extremely successful computer printer ink jet print head, which is a silicon based microstructure
based on the heated bubble jet concept.  Many applications exist for a highly improved method of
dispensing miniature chemical droplets where heating is not allowed, and new opportunities will
arise, in the fields of molecular biology, clinical labs, environmental labs, and the chemical industry.
It will replace, speed-up, and decrease the sample sizes being handled in many chemistry processing
sequences, particularly those involved with manual or even current robotic pipetting procedures.
The chemical jet samples can be rapidly dispensed precisely in location, size, and time under
computer control.  Miniaturized chemical experiments by the thousands can be rapidly done with this
device; this is amenable to multiple processes requiring many combinatorial and/or sequential
chemical reactants to be combined or just placed, separately or jointly, for subsequent processing or
analysis.  For example, the human genome program has ideal applications for this proposed
dispenser; the arraying of transformed bacterial colonies carrying DNA of chromosome 19 onto
8x12 cm nylon filters is a significant bottleneck (currently >3 hours for 45 nylon filters) to the
research as it is currently done with a slow robotic needle dipping method.  Other biomedical
applications include synthesis of DNA oligomers, and injection into multichannel electrophoresis
experiments.  The potential exists to lower the dispenser production costs so that instrumentation
could be disposed of rather than cleaned and re-used, which is a big advantage for infectious or toxic
materials; smaller samples can be handled, thus producing less chemical usage and waste.
    Enormously      advantageous scaling factors accrue by reducing the sample diameter, L:
Concentration(fixed solute) ∝  L-3 , Time(diffusion) ∝  L+2 , Density(spatial array) ∝  L-1 .

   III.  Device Concept

The prototype device of this project is based on several common fabrication procedures used in
MEMS technology.   First, standard spin coated positive photoresists(PR) and contact lithography
from standard 100 mm(4 x 4 inch) photomasks is used.  The preferential etching of [100] oriented
silicon that is double side polished, is used to form the fluid reservoirs in this microfluidics device;
these reservoirs are referred to as the dead well and driven well.  The preferential etching of the
silicon leaves a square well in the silicon with a very thin( 40 µm) membrane of silicon left.  The
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silicon membrane of the driven well is actuated by a bonded piezoelectric transducer that deflects the
membrane inward, compresses the fluid in the driven well, and ejects a micro droplet out the exit
nozzle.  The piezoelectric transducer is mounted with conductive epoxy to gold pads that are
evaporated onto the silicon opposite the etched wells, on the outside of the silicon wafer; extra metal
is deposited for contacts and other alignment features to be discussed later.  The micro capillaries
connecting the reservoirs to the inlet and exit nozzle are etched in Pyrex glass.  This 1 mm thick glass
is anodically bonded to the standard thickness(375 µm) silicon wafer.  This anodic bonding method
is well established and known to sustain pressures in excess of 1.4 MPa (200 psi).  Most of the
fabrication is of the type used in the MEMS or IC industry and yields a precision integrated structure.
The piezoelectric actuator was chosen for its high pressure, small displacement attributes as well as
its commercial availability in high quality, thin plate form.  Piezoelectric thin films integrated onto the
microfluidics structure were considered, but it was deemed to be an immature technology at this
point; it is questionable if thick enough, high quality films could be produced by this method, and it
would also be a major processing investment and development.  Commercial PZT(lead zirconium
titanate) plates, that were plated and poled were used to make a bimorphic actuator.  A sketch of the
device concept is shown in Figure 3.1.  The actual prototype device had parallel rather than
converging exit nozzles.  It also had a small glass support layer bonded onto the dead well, to
prevent this well's membrane from bursting in operation; this support layer is not shown in the
sketch.

Chemical
Fill well

Fill pipe
(optional)

Piezoelectric driver

Silicon wafer
 (bonded to glass substrate)

Glass capillary substrate

Capillaries - chemical jets
(focused or parallel)

Focus point for capillary droplets

Chemical droplet

Driver
(ultrasonic)

Driven well

Dead well

Fill well

AA

A-A :

Figure 3.1.   Concept sketch of chemical jet dispenser composed of bonded silicon and glass wafers.
A micro chemical droplet is ejected from the exit nozzle by pressure generated by a piezoelectric
driver.
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This micro-jet dispenser can test several new concepts: 1. orifice/capillary in the plane of the silicon
wafer; the common ink jet dispensers use an exit nozzle or orifice perpendicular to the plane of the
silicon wafer, usually on the wall of the driven well.  2. an innovative fluid compliance feature using
a contamination and leak proof capacitive dead well under a flexible silicon diaphragm; 3. integrated
ultrasonic drive - highly efficient through a thin silicon membrane window that does not heat the
fluid; 4. ultrasonic channel -to-channel isolation through an orthogonal layout geometry.

Some of the research issues to address are related to operational principles and the magnitude of
various physical effects; these include: 1. ultrasonic cross talk,  2. droplet precision,  3. nozzle
drying,  4. hydraulic resistance and compliance for different fluids and droplet repetition rate,
5. integration of piezoelectric drivers and the minimum size drive needed,  6. capillary blockage by
particulates,  and 7. fluid feed pressure control.

   IV.  Device Fabrication

Masks and Overview

Fairly complete full scale sketches of the first two layers for the silicon are shown in Figure 4.1.

L = 1 , dark field, pos polarity;
silicon inner mask;
bonded side  -  deep etched.

L = 2 , dark field, neg polarity;
silicon outer mask;
driver  -  metalized.

CHEMJET 6.1 
LLNL  MTC

Figure 4.1.  Photomask layers 1 and 2 full scale; the reference circle is the outline of the silicon
wafer (75 mm diameter, [3 inch]).

The prototype device was fabricated with the use of three photolithographic masking layers: 1.) the
first layer is used to pattern the silicon on the inside or bonded side with a deep timed etch to make
the fluid wells and actuator diaphragm in the silicon,  2.) the second layer is to pattern a gold layer
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onto the outer silicon and it is registered with the first layer, and 3.) the third layer is used to define
the six capillaries, and each has varying diameters from the feed section(large ~ 400 µm), to the
middle section( small ~20 µm), to the nozzle section( medium ~ 100 µm).

Not all the alignment features show up in Figure 4.1.  There are some too small to print and some
large ones on the corners of the mask that are not shown that enable aligning the two masks together
in a two sided alignment jig, prior to wafer insertion and clamping.  The large baseline feature in
layer one is used to align the mask to the wafer flat, so that the anisotropic etching is aligned with the
[010] and [001] axes.  The outer squares are gross alignment features to find the edge of the wafer
for centering.  In layer two, the metalized outer layer, the large vertical lines are for eventually
marking the precision wafer saw cut lines, used to form the end of the exit nozzles.  The other
features in layer two are there for location and alignment of the entry holes and the dead well and the
driven well and to provide a conductive base with contact for mounting the PZT actuator.

The third layer is used for patterning the capillaries into the glass.  This layer is shown in Figure 4.2
along with a composite drawing showing the overall device in plan view after the PZT has been
added to the gold on silicon pads and the assembly has been cut along the plane defining the end of
the exit nozzles.

L = 3 , dark field, pos polarity;
glass inner mask -bonded side;
Large(left), small(mid.), medium(rt.) 
capillaries etched.

L = 2&3 , device composite;
silicon top view; PZT cross
hatched; nozzle exits cut.

CHEMJET 6.1 
LLNL  MTC

Figure 4.2.  The layer three is used to define the six capillaries in the glass substrate; the reference
circle is the outline of the silicon wafer (75 mm diameter, [3 inch]).  Each capillary has varying
diameters according to function.  The supply section is large and short; the flow restriction section is
small and long, sometimes meandering; and the exit region is medium sized and short.  The right
sketch is a composite view of the finished device, but without the fluid inlet tubes that will be epoxy
bonded to the inlet ports, shown as small squares on the left side.
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Silicon Processing

The silicon starting material is [100] oriented with standard wafer flats and is double side polished
and 375 µm thick.  The following is a brief outline of the fabrication sequence for the silicon part of
the device.

SILICON PROCESS SEQUENCE:
1. Clean the silicon wafers - RCA clean.
2. CVD deposit masking nitride.  100 nm low stress silicon nitride.
3. Coat with HMDS adhesion promoter.
4. Print layer one; the silicon well patterns.  Shipley 1518 positive resist, 1 µm thick.
5. Plasma etch layer one features into silicon nitride(etch windows); CF4/O2/200mT/150W.
6. Timed KOH etch of silicon to form reservoirs and actuator membranes and inlet ports.  Done in

three steps with intermediate depth measurements to estimate finish time when silicon
membrane is 40 µm thick.

7. Strip the remaining silicon nitride mask.
8. Coat with HMDS adhesion promoter.
9. Spin coat with Shipley 1518 positive resist, 1 µm thick, in special spinning jig with retaining

pins around the periphery, not using vacuum clamp because of the membranes.  Soft bake.
10. Use special double sided alignment jig:  align layer two mask to layer one mask in jig.
11. Print layer two:  align wafer etched features from layer one to layer one mask; assemble

prealigned jig and print layer two.  When drying wafers after development and rinse, use
special care with air drying nozzle; use at low pressures and angle shallow enough to prevent
blowing Si windows in,  or creating a Bernoulli effect and sucking them out.

12. Ebeam evaporate layer two metals for outside locators(inlet ports, dead wells, and wafer
precision saw lines, and PZT pads): 10 nm Cr then 100 nm Au.

13. Liftoff in hot acetone and ultrasonic.  Use Q tip in hot(boiling) acetone to scrub the metal that is
not "lifted off", but very carefully avoid the silicon membranes.  The e-beam coater tends to
overheat the photoresist, impeding lift off.

14. Rinse in isopropyl alcohol and water.  Blow dry.

Glass Processing

The glass for the device is the Corning 7740 type, commonly known as Pyrex.  This glass is
designed to have a similar thermal expansion coefficient to the silicon and is also useful for anodic
bonding.  The glass wafers used for this project were double side polished by an optical supplier to
an optical finish from the manufacturer's blanks; the original thickness was about 3 mm and the final
size is 1 mm thick and 75 mm in diameter.

GLASS PROCESS SEQUENCE:
1. Clean the glass wafers; organic removal:  hot peroxide/sulfuric; water rinse.
2. Sputter coat the glass, capillary side, with 100 nm Mo at low power(low stress).
3. Print layer three; the capillaries.
4. Etch the capillary patterns into the Mo;  35H3PO4/35H2O/20Acetic/10HNO3.
5. Strip the photoresist.
6. Etch the capillaries into the glass;  40HF/40HCl/20H20; patterned Mo mask.
7. Strip the Mo.
8. Water rinse, blow dry.
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Piezoelectric Processing

The piezoelectric actuator is made from commercial PZT(Lead Zirconium Titanate) plates that are
silver plated and poled; the plates are 225 µm thick and 25 mm square.

PZT PROCESS SEQUENCE:
1. First, the poling polarity must be determined.  This is easily done by placing the PZT plate on a

simple jig made with an aluminum foil covered microscope slide and a spring contact.  The
bottom side of the plate contacts the foil which is used as electrical ground.  The top side of
plate is contacted by a spring contact that is connected to an oscilloscope.  With the
oscilloscope scanning at about a one second rate and a vertical sensitivity of about 0.1 V/cm,
the plate is mechanically tapped gently with a small tool, such as a rounded cap end of a ball
point pen.  The PZT is very fragile and prone to cracking if sharp tools, or deforming forces
are used.  The compressive force of the tool impact generates a bipolar pulse whose initial
portion is positive when the top side is oriented correctly; this side is then marked positive.

2. The PZT bimorph can be formed by bonding together two PZT plates with opposing poling
polarities, either head to head or tail to tail.  Either method can work, but the bending motion (a
dome like bulge of the bimorph plate) from an applied field will have opposing polarities, so it
is very important to keep track of the polarities throughout.  The bonding is accomplished
using silver conductive epoxy, spread onto the plates with a wooden toothpick to several
hundred microns thick.  The two plates are then brought into contact.  The excess epoxy is
initially squeezed out by hand pressure, starting at the center, and then removed with a Q tip;
the plate pair is finally pressured between to glass plates that are covered with wax paper and
squeezed again with hand pressure of several pounds force.  A curing weight of about 600 g is
applied to composite plate stack.  This results in an epoxy bond layer about 100 µm thick.

3. The bonded plates are now shorted on the sides by the excess epoxy.  The square actuators and
test cantilever beams are cut from the bonded pair with a precision abrasive saw that is water
cooled.  The edges of the bimorph are now clean and free from any silver or epoxy that might
short out the device.  These edges must be kept clean and free from fingerprints, etc., to
prevent arc formation from high bias voltages.

4. The polarity of the bonded pair is determined before edge sealing and mounting onto the
anodically bonded silicon/glass composite.  The bonded pair test is also determined with a very
simple, but different clamping jig.  This jig is again made with an aluminum foil covered
microscope slide.  The PZT bimorph is placed on the slide so that about 1.5 mm of it is off the
end of the foil, but still over the glass.  This portion is then clamped with a small alligator clip,
bent so that it contacts the upper bimorph electrode; the lower bimorph electrode is contacted by
the aluminum foil at its edge.  This leaves the entire bimorph, mounted like a diving board,
tilting slightly off but still over the foil covered slide.  See Figure 5.3.  The free end, opposite
the alligator clip clamp, is placed under a microscope.  By applying voltages from ten to several
hundred volts across the bimorph, the end of the device deflects under the microscope.  With a
high magnification, the depth of field is very shallow, and the vertical position of the free end
of the bimorph can be determined as a function of voltage.  The polarity of the composite is
again marked with a pencil on the silver plating, so that it is clear which side of the composite
must have a certain polarity voltage in order to deform in a convex fashion.

5. The sides of the bimorph are now coated with a thin layer of clear, non conductive epoxy.
This is done by first generating some of the epoxy in a very thin layer on a microscope slide,
using another slide as a squeegee.  Then the bimorph is held by a small vacuum chuck and
contacted into the thin layer, edge-on, sequentially on all four sides.  After the clear epoxy is
placed on all four edges, the bimorph is pressed against a wax paper protected glass plate.
This last procedure should leave the mounting side of the bimorph flat, so that its silver plating
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can be bonded to the gold plated silicon pad; the sides should be well protected from shorting
out in the final conductive epoxy mounting procedure to the silicon and also protected from
shorting out or arcing along the edges of the bimorph.  One final deflection and polarity check
is done to confirm the absence of shorts and correct polarity.

Bonding and Final Assembly

1. The silicon and glass wafers are anodically bonding together at 450° C in an nitrogen
atmosphere.  First, alignment is done under a low power microscope by hand and pressure is
applied until interference fringes are observed.  With a successful anodic bond, the silicon
actuator diaphragms are visibly bowed inwards about 100 µm by the atmospheric pressure
during the cool down.  The entire capillary system and fluid cavities are under partial vacuum
and a leak free channel is obvious.  The yield for this procedure was 100 % for about six
wafer pairs with six channels per wafer.  The inlet port is now opened by forcing a syringe tip
into the silicon membrane in the inlet port region; the hole is enlarged using the beveled edge of
the syringe tip.  The debris is lightly shaken loose, but the excess small silicon debris is not
blown off or washed out at this stage to prevent it from jamming in the inlet capillary.  The
composite wafer pair is now cut on a water cooled precision wafer saw to form the exit
nozzles; the gold reference cut lines on outer silicon side are used for saw alignment.  The
robust glass outer bottom side is used for adhesive mounting to the saw table.  After the
sawing, the wafer composite is ultrasonically washed in water and isopropyl alcohol to remove
saw and silicon debris from the previous steps.  The alcohol is finally removed from the
interior of the device by placing it at an approximately 30 degree incline under an incandescent
desk lamp to proved a slow drying situation with a modest temperature and gravimetric
gradient.

2. The PZT bimorph is bonded onto the silicon side of the silicon/glass wafer pair with silver
conductive epoxy.  A vacuum chuck is used.  The bimorph is pressed and laterally moved very
slightly to thin the conductive epoxy; it is very important to get the epoxy thin for good
transducer coupling, while not shorting out the insulating protective side walls of the bimorph.
At the same time, small electrical leads can be epoxied onto the bimorph ground plane pad and
also onto the top of the bimorph, using a minimal mass.

3. The dead wells are capped on the outside with clear epoxy using 12 mm square pieces of
glass.  This is to protect the dead well from bursting during priming/purging operations.

4. The inlet to the wafer pair is done with standard syringe needle where the end has been filed to
a very blunt bevel, with the opening facing the channel.  The needle is supported by an
aluminum cylindrical ferrule, with a loose sliding fit over the needle.  The inlet connection
takes three sequential epoxy joints.  First, the ferrule is coated with a very small amount of
epoxy on its outer cylindrical edge, near the bottom, but not at all on the bottom itself.  If
epoxy is on the bottom face of the ferrule, it will ooze into the inlet port and block it.  The
ferrule is slid high onto the needle, then the needle is put into the inlet port on the wafer, then
the ferrule is released to slide down the needle and make contact with the wafer.  The epoxy
will make a small fillet on the outside of the cylinder as the ferrule is rotated, while the needle is
used to position the assembly.  After the ferrule epoxy is cured, the needle can be epoxied onto
the top of the ferrule.  Finally, a third coating of epoxy can be applied to both joints as a thick
supportive layer, now that the parts are sealed and in the correct placement.
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    V.  Piezoelectric Theory and Measurements

Introduction and approximations

The term "piezoelectric" literally means pressure electricity.  This is the direct effect where an applied
mechanical stress results in induced electric fields in the piezoelectric material.  In this device, the
inverse effect is used, where an applied electric field will induce mechanical stresses, and strains, in
the materials.  It is important to note that piezoelectric materials lack a center of inversion and that a
applied field in one direction can induce stresses and strains in multiple other directions.  The
piezoelectric effect exists in both single crystals, such as quartz, and in polycrystalline material, such
as the PZT(Lead Zirconium Titanate), used in this device.  The fundamental piezoelectric relations
can have many forms, depending upon which variables are chosen as independent and whether the
effect is characterized by polarization or electric flux density.  Standard engineering compact tensor
notation is used; in this scheme, for example, d333  =  d33 and d311  = d31.  The compaction
scheme is described in Nye[1] and relies upon the symmetry relations for real materials; for example:
dkij  =  dkji.  Subscript compaction is done with the following standard scheme:

ij compact
11 1
22 2
33 3

23 or 32 4
13 or 31 5
12 or 21 6

        Table 5.1.   Compact engineering tensor notation.

The electric flux density scheme with mechanical stress, Tkl, and electric field, Ek, are used as the
independent variables in this work:

Sij  =  sijkl Tkl  +  dkij Ek 5.1

Where Sij is the mechanical strain, sijkl are the elastic compliance constants(the inverse of the

elastic stiffness constants or loosely Young's moduli, Ey), and dkij are the piezoelectric constants.
For the PZT used in this work, type LTZ-2, the manufacturer's specifications for the non-zero
constants are[2]:

d31  =  -1.79E-10 M/V
d33  =  +4.05E-10 M/V

5.2
Ey11  =  +6.10E+10 N/m2

Ey22  =  +6.10E+10 N/m2

Ey33  =  +5.32E+10 N/m2

The poling axis is assumed to be the "3" direction, i.e. x3  =  z axis.
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Free standing plates of PZT are illustrated in Figure 5.1, which also shows the principle behind the
PZT bimorph used in this project.

Z

REVERSE
BIASED

Z

UNBIASED
BIASED

FLIP
  &
BOND

(a.)

(b.)

(c.)

Figure  5.1.  The PZT bimorph is made by bonding two free plates of oppositely poled material.
Plate (a.) is shown as unbiased in the dashed line; when biased, it expands laterally and shrinks
vertically.  Plate (b.) is similar in size and poling direction, shown by the "Z" axis, but with an
opposite polarity bias, and a subsequent lateral shrinkage.  The bimorph is made by bonding the two
plates together; this is done by inverting the (b.) plate before bonding, so that the poling axes are
head to head.  The composite is shown in bimorph (c.) where the applied bias fields are now in the
same direction and additive.  In this configuration, only the two outer electrodes are needed and the
inner electrode is allowed to float to an intermediate potential.  The elongation of the upper plate and
the shrinkage of the lower plate leads to the dome like deformation of the bimorph plates, or the
simple bending of slender cantilever.

For a free standing plate of PZT, with the z axis normal to the plate and an electric field applied along
the z axis, the following relations apply:

S3  =  d33 E3 5.3
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S1  =  S2  =  d31 E3 5.4

Some of the transducer plates used in this work are 200 µm thick and 12 mm square.  For a single
free standing plate of this size, a bias of 100 V will induce the following deformations:

∆z  =  (S3)z  =  (-2E-4) 200  µm  =  -0.04 µm 5.5

∆x  =  ∆y  =  (S1)x  =  (+0.9E-4) 12 mm  =  +1.08 µm 5.6

These are small deformations, but they can yield very large stresses, depending upon the boundary
conditions that may be applied, as subsequent experiments will show.

The deformation of the high aspect ratio cantilever bimorph or the square bimorph plate is relatively
complex, but some simple approximations are useful for initial order of magnitude estimates and
design purposes.  More exact plate deformation theory will be used later to compare to some of the
experimental results.  The actual deformations have dominant parabolic and quadratic terms, but
some initial estimates will use the deformation modeled by a simple circular arc and are quite useful.
The first order of importance is to estimate the volume of fluid displaced by a device membrane
deflection and the approximate strain consistent with this.  The actual membrane is square(L x L),
and it may be approximated by an equal area circular one with diameter, d.

L2  =  (π d2) / 4 5.7

The spherical deformation can considered as a spherical segment volume, V,  with chord, d, and
membrane deflection height, h:

V  =   ( π h2)  ({[d2 + 4 h2] / 8 h}  -  h / 3) 5.8

For   d  >>  h,  equation 5.8 may be approximated by:

V  =   ( π h)  (d2 / 8) 5.9

Using equation 5.7 in 5.9 results in a useful approximation for the fluid displacement, Vf,  in the
transducer driven well (L x L), resulting from a deflection, h:

Vf  =   0.5 hL2 5.10

For some typical realistic design numbers, a deflection of h = 2 µm, and a side L = 1 cm, results
in a driven well displacement of Vf = 1E+8 µm3 = 0.1 mm3.  For purposes of visualization, it

may be useful to note that   1 mm3 = 1 µlitre, or about the size of grain of salt.  The 2 µm
deflection is small; it represents about 2 percent of the diameter of a human hair.  A spherical droplet
with a volume of 0.1 mm3 has a radius of  r = 288 µm; this gives an idea of the range of capillary
diameters that might be of interest.  Of course, enough energy must be imparted to the slug of fluid
in the capillary so that it is ejected far enough to overcome the surface tension, and so that the droplet
may break free and have a useful free velocity.
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It is interesting to estimate the strain in a membrane of thickness, Tm, for very shallow
deformations, similar to the preceding example.  By approximating the deformed membrane in a
simple two-dimensional circular arc segment, a rough estimate for the geometrical strain in the
surface of the membrane can be obtained.  First, the relations of the parameters of a circular arc are
derived with the aid of Figure  5.2:

h
L / 2

r
r - h

Ω

Figure 5.2.  A segment of a circular arc is used to obtain a relation between the deflection, h,  the
radius, and the diameter, L, of the chord; this approximates a two dimensional membrane deflection.

(L/2)2  +  (r - h)2  =  r2 5.11

r  =  ( L2/4 + h2) /  2h   ≈  L2 / 8h 5.12

tan Ω  =  ( L/2 ) / ( r - h )  ≈  4h / L 5.13

Again, considering some practical parameters, for   L = 1 cm, and for   h = 2 µm, these
expressions yield   r = 6.25 m,   and   Ω =  8E-4 radians =  0.0458 degrees.  By considering a
finite thickness, Tm,  membrane that is deformed two dimensionally, like Figure 5.2, the top surface
will be in tension and the bottom surface will be in compression.  By considering the difference in
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arc lengths around a neutral arc, a simple estimate for the geometrical strain,  Sg,  at the surfaces can
be derived using the radii at   ri,o = r ± Tm / 2 and the equation 5.12:

Sg  =  ( Tm / 2 ) / r  =  4 h Tm  /  L2 5.14

Using the previous parameters and a membrane thickness of Tm = 400 µm, which is
approximately the thickness of the PZT bimorph, the geometrical strain is estimated by equation 5.14
to be Sg = 3.2E-5 for a deflection of 2 µm.  Using the previous expressions for the
piezoelectrically induced strain, equations 5.4, 5.6, with the same electric field, the piezoelectrically
induced strain in the plane of the membrane is Sp = 9.0E-5, which is comparable to the geometrical
strain, Sg, in magnitude.  So it seems reasonable that the piezoelectric bimorph actuator is strong
enough to deform itself to a sufficient extent to form 0.1 mm3  sized fluid well deformations,      with
   free standing boundary conditions and using these simple order of magnitude approximations   .
Practical applied fields for the PZT can easily be an order of magnitude larger than those used in
these estimates.  The additional constraints imposed by the boundary conditions at the edge of the
actuator membrane are expected to reduce the deflection estimates in these simple estimates.  The
exact solution of the coupled electromechanical equations is very difficult and probably not possible
in closed form for this device, but it is not really necessary for a first phase design effort.  In general,
the stored energy in the mechanical terms will dominate the solution.  The solutions for pure
mechanical plates[3] will provide very good starting points for estimating the design parameters.  In
other words, the plate stiffness constant is modified only slightly by the presence of the piezoelectric
effect; the electromechanical coupling coefficient is small.  The exact circular plate theory[3]  for both
free and fixed boundary conditions will be used later for comparison to the experimental deflection
measurements, but the simple estimates are seen to be useful.

PZT Cantilever Bimorph Measurements

The first tests done with the PZT bimorphs used a long narrow cantilever, supported like a diving
board as described under PZT processing, step number 4, and as shown in Figure 5.3.
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Figure 5.3.   The PZT cantilever deflection is tested with an anchor at point b and a fulcrum point at
point a; the free end of the beam is at point e.

The length of the beam is Lc.  The free end deflects in a motion shown as Zc under an applied bias.
The bent beam is shown approximately in the shape of a circular arc.  Experimentally, points a and b
are close compared to Lc and also the angle abc is very small; the motion Zc is very small compared
to the beam length, Lc.  The motion Zc is very nearly vertical; it is viewed under a microscope.

The experimental configuration shown in Figure 5.3 was used to take deflection data for a bimorph
cantilever and the free end deflection is shown in Figure 5.4 as function of bias voltage.
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Figure 5.4.   Deflection data for the free end of a PZT bimorph cantilever, 24 x 1 x 0.4 mm.  The
fulcrum point is about 1.5 mm from the fixed end.  The voltage is applied across the smallest
dimension( 0.4 mm).

The data of Figure 5.4 shows some hysteresis.  The data is essentially static with about 20 seconds
spent at each point to focus and read the microscope Z position, and then adjust the bias.  The data
shows that with the voltage returned to zero, the deflection also eventually relaxes back to zero, but
there is a fast component of mechanical response to voltage and a smaller slow component that may
last many minutes.  The data also shows some inflections at 100 to 90 V transitions and 200 to 190
V transitions when the bias is decreasing.  These transitions appear to be an artifact of the
combination of hysteresis and the nature of the power supply that was adjusted with thumbwheel
dials for 10 V  and 100 V increments.  It is not obvious why the bias step discontinuity appears
only with decreasing bias curve and not on the increasing bias curve, since the upward bias involves
a discontinuity as the bias sequence is   . . .  70, 80, 90, 0, 100, 110, 120, . . .etc.  This data
indicates that deflections large enough to be useful for fluid actuators should be possible with these
type of components with practical voltages.  Of course, the effects of other mechanical boundary
conditions and the forces required to additionally deflect a smaller amount of silicon are expected to
substantially affect the details.  Square plates will be stiffer than slender cantilevers and fixed edge
boundary conditions versus free ones will reduce the amount of motion.  It is interesting to consider
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the amount of deflection, i.e. the amount of arching, H, away from a straight line connecting the two
ends, in the center of the bent bimorph as a function of the deflection of the free end which is more
easily measured.  This is illustrated with the use of Figure 5.5.
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Figure 5.5.   The bent cantilever is shown between points d and b.  The measured end displacement
is labeled Zc.  The limit case is considered for very small deflections Zc  <<  Lc and also for very
small angles Ω .  Zc is approximately vertical.  The fulcrum point is approximated as being
vanishingly close to point b, so that the initial cantilever is tangential at point b.

The approximations of a circular arc combined with the other assumptions allow an estimate for the
amount of arching, H,  of the bimorph as a function of the free end deflection.  From geometrical
arguments and using the approximations derived from Figure 5.2 it can be shown that:

H  ≈  Zc / 4 5.15

As will be seen in the application of the bimorphs, the useful deflection of interest will be
characterized by the center arching, H, and this is seen to be smaller by about a factor of four(5.15)
than the conveniently measured endpoint shown, for example, in the data of Figure 5.4.

The cantilever bimorph was also studied using a small signal sinusoidal source of variable
frequency.  This ac response of the cantilever free end, from a side view, was filmed on video, along
with the step function response to various dc voltage steps.  The dc voltage steps were as ideal as
possible by precharging the dc supply and 50 ohm supply line to the desired bias and then
connecting it directly through a coaxial connector to the PZT.  The step function responses showed
similar behavior to that plotted in Figure 5.4, although with lesser precision; the hysteresis and
fast/slow response attributes were clearly visible.  The hysteresis and lag back to zero were evident
in both polarities of step functions.  The small signal ac response showed a series of mechanical
resonances, as expected from the theory[4].  The resonances displayed a non-linearity that can be
attributed to small nonlinear terms in the stress-strain relations.  The qualitative behavior of the
amplitude of vibration as a function of a slowly swept frequency is shown in Figure 5.6.
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Figure 5.6a,b.   The qualitative(from a side view video) swept frequency response of a bimorph
cantilever.  In figure a, the frequency is sweeping slowly up on the dashed line, and down on the
solid line.  The amplitudes of the resonances are lower in amplitude and higher in frequency for the
upward sweep.  In figure b, the characteristic theoretical shape of a nonlinear resonance is illustrated.
The dashed line is not realized; the swept behavior follows the solid lines, which is consistent with
the observations of figure a.

PZT Square Plate Measurements and Theory

A square bimorph plate of PZT similar to that planned for use in the fluidic drop transducer was built
with 12 x 12 x 0.4 mm dimensions.  This plate was first tested similar to the cantilever with one
corner clamped, in a fulcrum style, and the other diagonal corner viewed under a microscope; this
gives about two micron precision in the vertical deflection.  The results are shown in Figure 5.7.

The deflection for the square bimorph is about 60 µm at 250 V, whereas for the longer cantilever
beam of Figure 5.4, the deflection is about 200 µm at 250 V.  Part of the larger deflection of the
slender cantilever is certainly attributed to its greater length, but part of this is also from the lower
stiffness of the cantilever structure.  The bimorph of Figure 5.7 is designed to be used over silicon
membranes that are 10 x 10 x 0.040 mm, so that the bimorph is firmly bound at the edges with a
1 mm overlap onto the very rigid silicon frame.  The deformation of the free square bimorph is very
complex but a sketch of the expected deformation shape is shown in Figure 5.8.  It is seen that the
free square bimorph will tend to contract inward from the original square shape, shown in dashed
lines, and that the deformation is complex.  It is easy to envision with the aid of Figure 5.8, that if
the edges of the square bimorph are rigidly clamped, as they are in the actual chemjet device, the
edge boundary conditions become extremely complex.  They are not only restrained from shrinking
laterally, but the angle at the edges must tend toward a flat tangential boundary condition; also,
although the silicon wafer provides a very rigid frame to support its own membrane and the
bimorph, some distortion is expected to occur in it too.
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Figure 5.7.   Deflection data for a square PZT bimorph, 12 x 12 x 0.4 mm.  The deflection is
measured on a corner diagonally opposite the clamped corner.

Figure 5.8   The deformation of a free standing biased square bimorph is shown as a sketch, that
shows the lateral contraction, as well as the compound curvature.  The original square shape is
shown as the dashed line.  This shape is off the type measured in Figure 5.7.
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The actual PZT/silicon composite actuator, as used and mounted on the prototype chemical jet
device, was tested on a sample silicon wafer without the Pyrex capillary plate.  The initial composite
actuator testing was done without the Pyrex to enable an optical profilometer head to enter the well
region of the silicon and measure the deflection of the composite membrane as a function of the PZT
bias.  The results are shown in Figure 5.9.  Compared to the free bimorph plate deflections, the
deflection is significantly reduced by the additional stiffness imposed by the silicon, the silicon frame
mounting boundary conditions, the increased rigidity caused by the edge seal epoxy and the
mounting epoxy, and the top contact epoxy.  The free bimorph of Fig. 5.7 has a center deflection of
about (100 µm)/4 = 25 µm at 400 V; the composite actuator of Figure 5.9 has a center deflection
of about 14 µm at 400 V.   However, this final deflection is almost ten times what is estimated to be
required to compress the fluid well enough to form microdroplets, if no other losses are incurred.
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Figure 5.9.   PZT/silicon composite actuator deflection.  The PZT bimorph is 12 x 12 x 0.4 mm.
The silicon membrane is 10 x 10 x 0.040 mm; the silicon membrane wafer frame is 0.375 mm thick.
The Pyrex substrate is not included.

A sketch, to scale, of the cross section of the composite actuator mounted on the silicon/Pyrex
substrate is shown in Figure 5.10.  Even though the silicon is about twice as strong as the PZT, it is
so thin relatively, that it approximately comforms to the deflection imposed by the PZT.  It is
obvious that there are so many design variations and parameters, that an optimal design is not readily
apparent.  Two very critical parameters are the length to thickness ratio of the PZT, and thickness
ratio of the PZT to silicon.  Considering just the boundary conditions of the PZT plates yields many
possibilities.  The amount of PZT overlap(if any) onto the silicon is one major parameter.  The one
millimeter amount chosen in Figure 5.10 is estimated to be enough to give a strong edge mount that
will resist accidental bursting during priming operations, but not so much that the PZT deformation
is impeded in a major way.  This mounting format with the edge angular restraint and lateral
restraint, tends to restrict the vertical deflection significantly as the plate theory will indicate, but
serves to be a conservative practical approach.
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Figure 5.10.   A scaled cross section of the PZT/silicon composite actuator mounted on the
silicon/Pyrex bonded substrate.  The PZT bimorph is 12 x 12 x 0.4 mm.  The silicon membrane is
10 x 10 x 0.040 mm; the silicon membrane wafer frame is 0.375 mm thick, and the Pyrex is 1 mm
thick.  The PZT mounting epoxy is shown approximately to scale as a heavy black line.  The edge
sealing epoxy around the PZT bimorph and the top wire epoxy connection are not shown.

The composite actuator deflection shown in Figure 5.9 is, of course driven by piezoelectric effect.
This effect causes the differential shrinkage and expansion of the PZT layers which causes the
composite plate deformation.  It is interesting to estimate what kind of comparable mechanical force
will cause a similar deflection.  This can be done by using existing thick plate theory from the
literature[3].  The theory that will be adapted to this problem is that of thick homogeneous circular
plates subjected to small deflections.  In adapting the mechanical plate theory, the induced
piezoelectric effect will be neglected since it is a small second order effect(floating electrodes and no
applied field),  compared to the large mechanical driving force applied.  In other words, the stored
energy of the applied mechanical fields is much greater than the stored energy of the induced
piezoelectric fields, or the electromechanical coupling coefficient is small.

The theory for the thick homogeneous plate where the plate thickness is no more than one fourth the
radius and the deflection is less than half the plate thickness gives the following formulas for the
rigid plate edge boundary condition.  The rigid, fixed edge, boundary condition allows no
perpendicular motion and no angular deflection at the plate edge.

h  =  P a4  /  64D 5.16

D  =  E t3  /  12(1 - pr2) 5.17

y / h  =  -1  +  2(r/a)2  -  (r/a)4 5.18

The deflection at the center of the plate is h, the applied pressure is P, the radius is a, the plate
stiffness constant is D, the Young's modulus is E, the plate thickness is t, the Poisson's ratio is pr.
The vertical deflecton of the plate is given by equation 5.18, where the normalized vertical deflection
is y / h  and the normalized radius is (r/a) and this curve(fixed edge) is plotted in Figure 5.11.
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Figure 5.11.  The normalized deflection profiles for a thick circular plate of radius a and thickness t
are shown where the center deflection is normalized by h(eqn. 5.16); the theory requires h < t/2 and
t < a/4.  The plate is restrained by fixed or simple boundary conditions at the edge, r = a , and a
vertical pressure is applied.

The composite actuator plate is composed of several materials which will be replaced by an
equivalent amount of PZT with some assumptions for the purposes of theoretical estimates.  The
actual plate has a thickness, texp:

texp  =  tpzt  +  tep  +  tsi  =  600 µm 5.19

where tpzt = 457 µm of PZT,  tep = 102 µm of epoxy, and tsi = 41 µm of silicon.  It is
assumed that the epoxy will have the same Young's modulus as the PZT.  The silicon will be
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replaced by a slightly thicker equivalent of PZT.  This can be done by replacing the silicon with PZT
such that this plate layer stiffness constant remains unchanged.  Since the Young's modulus of PZT
is less than silicon, the effective layer thickness will increase slightly from 41 µm of silicon to
55 µm of PZT. The square diaphragm of 10 mm of actuator is replaced by an equal area circle of
radius  a = 5.64 mm.

The following material constants are used in subsequent plate theories:

c11 c12 c44 Poisson's density Young's mod
GPa GPa GPa ratio, pr g/cm3 GPa

Silicon 166 63.9 79.6 0.28[001] 2.33 130.5[100]
169.1[110]

0.18[    1    10] 187.9[111]
Germanium 128 48.3 68 0.27 5.32 101.5[100]
GaAs 119 53.8 59.5 0.31 5.32 85.5[100]
PZT 0.3 7.5 61.0[11]

53.2[33]

Table 5.2.  Some useful material constants including the elastic moduli, Poisson's ratio, density, and
Young's moduli.

The parameters needed to estimate the pressure that would cause the deflection of 16 µm observed in
Figure  5.9 are now established, and will be used in equations 5.16 and 5.17, which are combined
and rewritten in terms of pressure, Ptp for the thick plate:

Ptp  =  (16 / 3) ( E t3 h / [a4 {1 - pr2}]) 5.20

With,  E = 53.2 GPa,  t = 614 µm,  h = 16 µm,  a = 5.64 mm, and pr = 0.3, equation 5.20 for the
pressure required to induce the deflection, h, yields Ptp = 1.14 MPa( 166 psi), an experimentally
high and useful pressure value.

It is helpful to establish some validity for the approach used above by considering separate
experimental data[5] obtained for octagonal pure silicon membranes and applying equation 5.20.
The pure silicon plate has a radius of a = 2 mm, and a thickness of t = 50 µm.  This plate has been
experimentally observed to produce  deflections of about 50 µm with pressures of about
0.34 MPa(50 psi); these values are well below failure values.  With a deflection equal to the plate
thickness, this situation slightly exceeds the formula constraints for small deflections (h < t/2), but
the errors are not expected to be enormous.  For this simple silicon plate, equation 5.20 yields  a
required pressure of Ptp(si)  =  0.3 MPa(43 psi), which is in reasonably good agreement with the
experiment(50 psi).

It is important to note that the rigid boundary conditions for thick plate theory apply; namely that the
no angular deflection is allowed at the edge of the plate.  If this angular constraint is removed, the
theory shows that the deflection of equation 5.16 is increased by a factor of  (5 + pr) / (1 + pr),
which is approximately a factor of four, as shown in Figure 5.11.  In other words, the plate becomes
less stiff by this amount.  However, this should not be confused with the situation for thin shells.
Many thin shell and beam theories exist, including one for square thin shells[6-9].  The key point is
that the former theory that is relevant to the PZT actuator is a thick plate small deflection theory
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(h < t/2 , and t < a/4).  The thin shell theory is very useful for very thin membranes of silicon
and silicon nitride and this theory assumes the deflections are large and membrane is very thin
(h >> t  , and t << a).  Often, the angular boundary condition at the edge is assumed to be free.
Even if it is not, major changes do not occur in deflection for the shell.  An example of thin shell
deflection theory shows the dramatic difference in dependence of the main variables[6]:

Ps  =  (8 / 3) ( E t h3 / [a4 {1 - 0.24 pr}]) 5.21

Notice that the main differences are the pressure is proportional to t3h for the thick plate
theory(eqn. 5.20) and to th3 for the shell theory(eqn. 5.21).  These different regimes are very
important to consider when designing the actuators for the chemical jet drive actuator.
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    VI.  Microfluidic Theory and Measurements

Introduction and capillary flow theory

The initial testing of capillary channels in the bonded silicon Pyrex wafer pair was done using water
with the intent to see if the flow rates were visible and reasonable and that delamination and blockage
did not occur.  Simple theory[10] of capillary flow may be used to estimate the flow rates.  The flow
rate is given by:

F  =  ( π P Rc4 ) / (8 lc V ) 6.1

where F is the flow rate, P is the pressure drop across the capillary, Rc is the radius of the capillary,
lc is the length of the capillary, and V is the viscosity of the fluid.  Several flow rates are computed
for convenience in the table shown below.

Rc, capillary radius      F, flow rate
    micrometers       mm3 / sec

10 0.0271
20 0.433
40 6.932
80 110.9

100 270.8
120 561.5
140 1040.3
200 4332.8
300 21934.8

Table 6.1.   Flow rates for capillaries assuming a pressure of 0.6895 MPa (100 psi), a length of
10 cm, and a viscosity of 1 mPa-sec (1 cp) for water.

Initial large capillary flow tests

The first flow tests made on bonded substrate pairs had capillaries with a trapezoidal etched cross
section and an equivalent radius equal to about 80 micrometers.  The dead well and driven well
regions of the silicon, where the silicon membrane is thin, was manually capped with a glass blank
plate held in place with hand pressure.  Pressurized water up to about 0.2 MPa (30 psi) was
introduced into the inlet ports with a flexible vinyl tubing and the resulting water streams from the
exit capillaries were seen to emerge about 20 cm.  This proved to be a quick test that showed the
flow rate was about right and that the substrate bonding was adequate.  However, it proved to be
very difficult to hold the glass blanking plate down with sufficient pressure to avoid rupturing or
cracking the silicon well membranes, even with modest water pressures.  In these initial tests, the
water flow seemed to purge the flow channel clean of any trapped air.
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Initial small capillary flow tests

The first tests with smaller capillaries used the etched trapezoidal cross section capillaries again, with
much smaller equivalent radii of about 20 micrometers; the silicon well regions were capped over
with glass blanks that were epoxied directly onto the dead well regions.  The driven well regions
were capped with the composite PZT bimorph.  During the final precision cut of the bonded
substrate pair to form the exit capillary nozzles, there was concern that particles from the water
cooled saw would wick up into the capillaries and block them.  Wicking of several cubic millimeters
of fluid was observed into the driven well, but this did not block the capillaries.

A syringe was attached with epoxy to the silicon substrate using a supporting aluminum ferrule about
4 mm in diameter.  Gluing technique was important so as not to block the capillary path; this is
described in Section IV, Bonding and Final Assembly.  The first tests with small capillaries showed
that small air bubble were trapped in both the dead well and driven well; much more trapped air was
observed in the driven well.  Using the air head in the syringe body as a simple pressure gauge,
pressures up to about 1 MPa (130 psi) were applied.  The flow from the exit capillaries was very
small, on the order of one mm3 / sec or less.  Soap solutions and isopropyl alcohol fluids were also
tried, usually followed by very long water flush.  Nothing seemed to avoid the formation of trapped
air bubbles in the driven well region.  The bubbles appeared to form in random locations and were
mostly in the 0.05 to 0.5 mm size range.  The visual shrinkage of the bubbles in response to high
inlet pressures gives estimates of the pressure developed in the wells.  On a few occasions, by
changing the orientation of the device dynamically, a bubble in the water was seen to traverse the exit
capillary portion of the driven well while this exit capillary was oriented mostly vertically.  The
captured bubble was able to move across the upside down "drain hole" without getting sucked out.
Apparently, the force needed to deform and pull the bubble into the exit channel, and overcome its
surface tension, was insufficient; the flow and pressure - up to about 1 MPa (130 psi)    at the inlet    -
were not adequate.  Although reasonable steady state flow in these tests was obtained, the trapped air
bubbles in the driven well region of the device prevented the PZT actuator from ejecting any water
droplets.  Clearly, the fast compressive action of the PZT was absorbed in the driven well air
bubbles.

Second large capillary flow tests

The third series of fluid flow tests used devices with large capillaries again, about 120 micrometers
in diameter, but these tests used the syringe input and glass blanks and PZT bimorphs in a fully
assembled device.  Again, bubbles were trapped in the driven well of the device very easily when
water was used to prime the channel, but the problem was reduced by about an order of magnitude
by changing the purge technique.  By initially purging with isopropyl alcohol, and then switching to
water gradually at the inlet, it was possible to purge the device to where it appeared to be bubble free
as long as flow was maintained.  High pressure of about 0.5 MPa (75 psi) produced fluid streams
vertically up to about 40 cm.  Suck back of air into the exit nozzle during these tests was a problem.
The small, ~ 0.2 mm long, bubble stuck in the exit nozzle region was seen to move out and back
with the application of single pulse to the PZT; this was the first demonstration of PZT induced fluid
motion.  The motion ranged from about 0.6 mm with 400 V for 50 ms down to about 0.2 mm
with about 5 ms duration pulses.  Subsequent testing showed that the water could be made to bulge
in a dome like fashion from the exit nozzle; however, it did not break free from the surface tension
and become fully ejected.  The problem still appeared to be a result of very small trapped bubbles in
the driven well region which absorbed almost all of the PZT energy and compressional motion.  It is
interesting to note that the trapped bubbles did not seem to form in the square corners of the driven
well.  The static estimates of the PZT deflection indicated that volume compression of the driven well
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chamber should be about an order of magnitude more the typical droplet size desired(comparable to
the exit nozzle final diameter).

Actuator micro droplet ejection measurements

There was insufficient time to completely reprocess the device with the appropriate geometry and
fabrication changes learned from the series of initial tests.  However, some partially processed
substrates, held in reserve, were modified for one final series of tests.  For the final series of tests,
some Pyrex substrates with etched channels were modified before bonding with a miniature hand
held abrasive grinding wheel tool.  The area of glass at the exit capillary groove of the driven well
region was ground out and down, effectively widening and deepening the exit channel by several
hundred micrometers; at the same time, the length of the original narrow exit capillary was reduced
from 3 mm to 1 mm.  This enabled the purging pressure to dramatically increase the flow out of the
driven well and remove all the large trapped bubbles.  The ground surface was extremely rough and
tended to trap some very, very small bubbles that were barely visible with a 15X magnifier.  Still,
the repeated alcohol merging to water method of purging resulted in a big improvement.  The final
trapezoidal shaped exit channel nozzles were about 100 µm deep, and 200 - 250 µm wide, and
about 1 mm long.

Finally, the major goal of this project was achieved when 150 µm diameter droplets were
successfully, individually ejected from the nozzle with 700 V/50 ms pulses.  The PZT actuated
droplets, one drop per pulse, were captured on a hydrophobic silicon wafer several mm away from
the nozzle.  The target wafer was displaced between drops manually.  The visual inspection of the
drops under 10X magnification appeared to indicate a very uniform size about ±7 %.  The drops
evaporated in a few minutes under the laminar flow clean air bench.

Conclusions

A single channel of the micromachined chemical jet dispenser has been successfully demonstrated
and a patent disclosure filed[11].  The final modifications to the device involved custom fabrication
of the final channel on a bonded substrate pair that had six parallel channels available.  By minor
modifications of the fabrication procedure and some minor design changes, an array of similar
chemical jet channels could be made, each with independent drive and fluid sources.

One big design improvement that is easily implemented would be to move the micro capillaries from
the glass to the silicon.  The surfaces would be much smoother and a combination of isotropic and
anisotropic etching could be used with the addition of one masking layer to the silicon.  The glass
processing would be significantly reduced to a minimal value and it would simply serve as a capping
and structural layer.  The glass is not essential to the design concept, but is has been extremely useful
to see through the glass and determine the operational pitfalls.  The addition of a hydrophobic coating
to the exit face of the nozzles would be useful.

Many interesting attributes and characterization remains to be done.  These include characterizing the
droplets speed and uniformity; refill and speed limitations; fluid feed control; minimum voltage and
pulse length requirements; minimum transducer diameters required; and effect(if any) of the acoustic
pressure wave on biological solutes such as live cells and DNA fragments.
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